HEALTH INFORMATICS SEMINAR SERIES

Presents:

“AI in Digital Pathology”

Abstract: With the recent expansions of whole-slide digital scanning, archiving, and high-throughput tissue banks, the field of digital pathology is primed to benefit significantly from deep learning technology. This talk will cover several applications of deep learning for characterizing histopathological patterns on high-resolution microscopy images for cancerous and precancerous lesions. Furthermore, the current challenges for building deep learning models for pathology image analysis will be discussed and new methodological advances to address these bottlenecks will be presented.

Speaker: Saeed Hassanpour, PhD
Associate Professor, Departments of Biomedical Data Science, Computer Science and Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH

When: Wednesday, January 19, 2022 11:00 am – 12:00 pm

Join via Zoom Link: https://luc.zoom.us/j/81978164046

About the Speaker: Dr. Saeed Hassanpour is an Associate Professor in the Departments of Biomedical Data Science, Computer Science, and Epidemiology at Dartmouth College. His research is focused on machine learning and multimodal data analysis for precision health. Dr. Hassanpour has led multiple NIH-funded research projects, which resulted in novel machine learning and deep learning models for medical image analysis and clinical text mining to improve diagnosis, prognosis, and personalized therapies. Before joining Dartmouth, he worked as a Research Engineer at Microsoft. Dr. Hassanpour received his Ph.D. in Electrical Engineering with a minor in Biomedical Informatics from Stanford University and completed his postdoctoral training at Stanford Center for Artificial Intelligence in Medicine & Imaging.

Accreditation Statement: The Loyola University Chicago Stritch School of Medicine is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The Loyola University Chicago Stritch School of Medicine designates this other activity for a maximum of 1.0 AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

* Visit here to watch previous presentations and to find more information about future Seminars.